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SUMMARY  

This study aimed to evaluate the ability to use Vis-NIR spectroscopy to 
predict CaCO3 in the soil and to determine the contribution of the spectral ranges 
and wavelengths to the prediction. A total of 180 topsoil samples (0-25 cm) of 
anthropogenic soils derived from Flysch deposits in Dalmatia (Croatia) were 
analyzed for CaCO3 and scanned in the laboratory with an ASD FieldSpec 
spectroradiometer (350-2500 nm). The partial last square regression (PLSR) with 
leave-one-out cross-validation method was used for calibrating the Vis-NIR 
spectra and CaCO3 measured in the laboratory. The CaCO3 content in 
investigated soils varies within a very wide range from 186.0 to 894.7 g kg-1 and 
has a high an average value of 547.2 g kg-1 and normal - near symmetrical 
frequency distribution. Prediction parameters, the coefficient of determination 
(R2), the ratio of performance to deviation (RPD) and the range error ratio (RER) 
were 0.86, 2.42 and 11.4, respectively indicating that created PLSR model was 
able to predict CaCO3 content in soil with moderately successful accuracy. The 
prediction error of the CaCO3 measured as the root mean square error of 
prediction (RMSEP) was 57.9 g kg-1. These results suggest that Vis-NIR 
spectroscopy in combination with PLSR is acceptable as a rapid method for 
quality control (screening) of the CaCO3 content in investigated soils. 
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RESULTS AND DISCUSSION 
During the last two decades many researchers have demonstrated that Vis-

NIR diffuse reflectance spectroscopy (DRS) is capable of providing low cost, fast 
and reliable tool for prediction of different soil properties compared to laboratory 
analyzes (Ben-Dor and Banin, 1995; Viscarra Rossel et al. 2006a;  Volkan Bilgili 
et al. 2010; Stevens et al. 2013).  The carbonates as one of the essential soil 
properties were often estimated using DRS (Ben-Dor and Banin, 1995, 
Canasveras et al. 2012; Gomez et al. 2012 and 2013; Gras et al. 2014; Leone et 
al. 2012; Summers et al. 2011 Volkan Bilgili et al. 2010 and Khayamim et al. 
2015). The above-mentioned researchers have shown substantial differences in 
parameters of prediction accuracy (the coefficient of determination (R2) and the 
ratio of performance to deviation (RPD) that varied between 0.64-0.99 and 1.74-
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8.6, respectively. The Vis–NIR technique was not as precise as conventional 
chemical analyses but provides an opportunity to analyse a large number of 
samples in a short time. CaCO3 significantly influences the reflectance 
characteristics of a soil and has spectral activity in the NIR spectral region (700-
2500 nm). The strongest diagnostic vibrational absorptions are at 2300-2350 nm 
and other three weaker bands occur near 2120-2160 nm, 1997-2000 nm and 
1850-1870 nm (Clark, 1999). The soil spectrum characterizes complex 
absorption patterns with a large number of predictor variables that are highly 
collinear, and therefore analyses of diffuse reflectance spectra require the use of 
multivariate calibrations (Martens and Naes, 1989).The most common calibration 
method for analyses of CaCO3 (and soil) spectra is partial last square regression 
(PLSR), developed by Wold et al. (2001). A calcium carbonate is the most 
common carbonate polymorph in soil particularly abundant under semi-arid and 
dry subhumid conditions (Khayamim et al. 2015). The Ca carbonate has a 
marked influence on soil chemical properties, eg. pH, cation and anion retention. 
Ca carbonate surfaces specially interact with phosphate anion, although CaCO3 
also controls Ca concentration in soil solution and in the soil exchange complex 
(Braschi et al. 2003). The high content of carbonates increases pH and favours 
the formation of HCO3

- ions that lead to disturbance in the availability of some 
plant nutrition and various chlorosis eg. iron (Ksouri et al. 2005). The presence 
of free calcium carbonate in calcareous soils ensures a very high soil buffer 
capacity (Bache, 1984). The carbonates interact with soil organic matter (SOM) 
in aggregate formation and stabilization processes and can thus also contribute to 
SOM stabilization (Virto et al. 2011). Soils derived from Flysch deposits contain 
a high CaCO3 content that varied in a wide range (Miloš and Maleš, 1998). 
Rapid, nondestructive, inexpensive and accurate determination of carbonate 
content in these soils could be very useful for planning of agricultural production. 
The aim of this work was to estimate the ability of Vis-NIR diffuse reflectance 
spectroscopy in combination with PLSR for the prediction of CaCO3 content in 
surface horizon of anthropogenic terraced soils derived from Flysch deposits and 
to determine the contribution of the spectral ranges and wavelengths to the 
prediction. 

 
MATERIAL AND METHODS 

Study area and soil data 
The study area is situated in the central part of the Adriatic coastal area of 

Croatia near the city of the Split wider region, centred around 43°32′ N; 16°29′ E. 
This coastal region has a Mediterranean climate characterized by hot summers 
and mild, moderately rainy winters classified as Csa. The mean annual air 
temperature of the Split for the period between 1981 and 2010 was 15.9 °C, the 
mean annual precipitation for the same time was 1052 mm. Geologically, this 
area was built of Eocene Flysch marls, sandstones and siltstones with lenses of 
calcirudites and calcarenites (Marinčić et al. 1971; Marinčić et al. 1976). These 
sediments characterized a high proportion and wide range of carbonate 
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component. According to Miščević and Vlastelica (2014) and Vlastelica (2015), 
CaCO3 varies in the range of 42% to 79% and 32% to 89%, respectively. Water 
impermeable geological base and sloping terrain, mainly between 10-30% make 
this area vulnerable to the erosion. So, terracing is basic measures to the soil 
protection. Investigated soils are rich in carbonates, have alkaline reaction, very 
low to medium humus content and silty loam texture (Miloš and Maleš, 1998). 
According to the World Reference Base for Soil Resources (IUSS Working 
Group WRB, 2014) investigated soils we classified as Terric Anthrosols 
(Calcaric, Siltic/Loamic, Escalic). Current agricultural production is 
characterized by the small, mixed and dislocated parcels of the olive groves, 
vineyards, Mediterranean orchards and abandoned terraced soil. For PLSR 
predictions we used laboratory and spectral measurement of the CaCO3 content 
in a total of 180 top-soil samples selected from a Soil spectral library of 
Dalmatia, Croatia described by Miloš (2013). The CaCO3 content was analysed 
using Scheibler calcimeter (JDPZ, 1966).  

Spectra measurements, data pre-processing and selection of the 
optimal PLSR model 

The spectra measurements of air-dried and sieved (2mm) soil samples 
were obtained in a laboratory using a portable TerraSpec 4 Hi-Res Mineral 
Spectrometer with a wavelength range of 350-2500 nm that were recorded output 
on a 1 nm interval. The correction with a standardized white Spectralon® panel 
(Analytical Spectral Devices, Boulder, CO, USA) with 100% reflectance was 
made prior to the first scan and after every ten samples. The PLSR model was 
optimized by spectral data pre-processing treatments that included (i) a 
wavelength reduction to 5 nm for the whole region 350–2500 nm using Savitzky-
Golay smoothing algorithm and (ii) first-order derivative algorithm with a second 
order polynomial fit (Savitzky and Golay, 1964). Furthermore, to eliminate the 
noise at edges of each spectrum the spectral range o f  the soil spectra was 
reduced to 400 - 2490 nm range. The PLS regression with leave-one-out cross-
validation method (Martens and Næs, 1989; Wold et al. (2001) was used for 
calibrating the spectra and CaCO3 content measured in the laboratory. The 
optimum number of factors in the PLSR model was obtained using leave-one-out 
cross-validation method (Efron and Tibshirani, 1994). 

Model Performance Evaluation 
The performance of the PLSR models was evaluated based on four 

parameters: first, the root mean square error of prediction (RMSEP); second, the 
ratio of performance to deviation (RPD); third, the range error ratio (RER) and 
fourth, the coefficient of determination (R2). RMSEP is the average prediction 
error of the validation samples around the regression line. RMSEP is defined as 
the square root of the average of squared differences between predicted and 
measured Y values of the validation samples (Equation 1). 
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where and  are the measured and predicted values of sample i, respectively, 
and N is the number of samples.  
The RPD is defined Williams (1987) as the ratio between the reference data 
standard deviation (SD) and the standard error of the prediction (SEP) given 
with Equation (2): 

 
where SDv is the standard deviation of the validation dataset. The standard error 
of prediction (SEP) is the standard deviation of differences between the reference 
values and the predicted values in the validation set (Equation 3). The SEP is the 
RMSEP corrected for bias (Equation 3). Bias is the average value of the 
difference between predicted and measured values (Equation 4). 

  

  

 
The range error ratio (RER, Equation 5) is the ratio of the difference 

between the largest and smallest values observed in the reference data set and the 
SEP (Starr et al. 1981).  

 
where Max and Min are the maximum and the minimum values in the reference 
dataset.    

Classification of prediction success is according to the thresholds given by 
Malley et al. (2004) which are tabulated in Table 1. 
 

Table 1. Guidelines for evaluating calibrations performance criteria in soil 
analyses according to Malley et al. (2004) 

Degree of prediction success R2 RPD RER 
Excellent >0.95 >4 >20 
Successful 0.90–0.95 3–4 15–20 
Moderately successful 0.80–0.90 2.25–3 10–15 
Moderately useful 0.70–0.80 1.75–2.25 8–10 

 
RESULTS AND DISCUSSION 

Soil and Spectral Properties 
Table 2 shows the descriptive statistics of the carbonate content (CaCO3) 

analysed using conventional laboratory method analysis (reference dataset) and 
their calibrated and cross-validated PLSR predictions for the 180 soil samples. 
The CaCO3 content for the whole dataset varies within a very wide range from 
186.0 to 894.7 g kg-1. A high an average values of CaCO3 (547.2 g kg-1) shows 
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that the analyzed soils are rich in carbonates. The skewness value for CaCO3 
reference data set of 0.09 and it graphically displays shows normal and near 
symmetrical distribution (Table 2; Figure 1).  
 
Table 2. Statistical description of the CaCO3 content (g kg -1) for the reference, 
calibration and validation data-sets for 180 soil samples 

Data-set Mean Max Min Range Std Dev. Skewness 
Reference 547.2 894.7 186.0 708.7 142.54 0.09 
Calibration 547.2 927.1 242.6 684.5 141.6 0.64 
Validation 547.4 938.6 248.5 690.1 140.4 0.67 

 
Figure 2. shows the mean raw soil spectra (Figure 2a) and mean first-

derivative (Figure 2b) equivalents for 180 soil samples in this study. The mean 
raw soil spectra (Figure 2a) is characterized with reflectance increasing with 
increasing wavelength in the visible range (400–700 nm) and without sharp 
peaks that can be directly associated with specific constituents. Absorptions in 
the visible range are associated with Fe minerals (eg. haematite and goethite; 
Sherman and Waite, 1985).  

 
Figure 1. Histogram of CaCO3 content in soil 

 
In the visible range, the mean first-derivative reflectance spectra (Figure 

2b) shows adsorption peak around 465 nm and a weak concave shape at the 
wavelengths around 565-665 nm. They indicate the presence of the 
chromophorous constituents mainly, Fe oxides and darkness of the organic 
constituents (Ben-Dor et al. 1999). 
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The mean raw and first derivative spectra (Figure 2a and b) show strong 
water and OH- absorption in the NIR near 1400 and 1900 nm (Ben-Dor and 
Banin, 1995; Clark, 1999). Figure 2b shows characteristic carbonate band with 
an absorption peak of calcite at 2335 nm as a result of the vibrational 
combinations and overtones of the CO3.  According to Clark (1999) carbonates 
have a strong diagnostic vibrational absorption band at 2300 to 2350 nm and 
three weaker bands occur near 2120 to 2160 nm, 1970-2000 nm and 1850-1870 
nm. Figure 2b shows a few other prominent absorption peaks between 2200-2300 
nm and around 2440 nm. This is due to metal-OH combination indicating 
vibrational stretching of H-O-H and OH– ions in secondary clay minerals (Clark 
1999; Viscarra Rossel et al. 2006b). These absorptions indicate the presence and 
the combined effect of secondary minerals such as smectite, illite and vermiculite 
(Viscarra Rossel et al. 2006b). 

Figure 2. The mean raw spectra (a) and mean first derivative equivalent (b) for 
all of 180 soil samples of the study 

Performance of calibration and validation models 
Table 3 shows the calibration and cross-validation results of the PLS 

regression models for the CaCO3 content. The prediction error of the CaCO3 
measured as RMSEP was 57.9 g kg-1 (Table 3). It can be considered that 2 times 
the RMSEP represents about 95% confidence interval of the test set mean. So for 
that confidence limit, there is a 95% chance that the mean value of the CaCO3 
predicted model lies between 431.4 and 663.0 g kg-1. The most commonly used 
parameters for evaluation of prediction accuracy of the CaCO3 model (R2, RPD 
and RER; Table 3) indicated moderately successful prediction according to 
thresholds given by Malley et al. (2004).  

The predicted parameters (R2, RPD and RER) in the combination with 
a high value of standard prediction error, measured as RMSEP (Table 3) suggest 
that the created model is suitable as a quality control method (screening) of the 
CaCO3 content in investigated soil.  

Our results show better prediction accuracy of CaCO3 content compared to 
study of Volkan Bilgili et al. (2010) that reported R2 0.71, RPD 1.84 and RER 
11.02 with a significantly narrower range of carbonates (25.7-98.7 g kg-1 CaCO3) 
and lower mean value of 55.1 g kg-1 CaCO3. Leone at al. (2012) also achieved a 
lower prediction accuracy of PLSR model compared to our results (R2 0.79 and 
RPD 2.07) with carbonates ranging from 0.0 to 636.0 g kg-1 CaCO3 and mean 
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value of 70.9 g kg-1 CaCO3. Gomez et al. (2013) obtained R2 0.71 and RPD 1.89 
with carbonate range of 0.5-375 g kg-1 CaCO3 and mean value of 65 g kg-1 

CaCO3, that also show lower prediction accuracy compared to our model. Some 
researchers reported even lower values of validation parameters e.g. Summers et 
al. (2011) R2 0.69 and RPD 2.1 and Khayamim et al. (2015) R2 0.58. 

 
Table 3. Calibration and validation results of the CaCO3 (g kg-1) model 
diagnostic  

Calibration Validation 
RMSEC R2 RMSEP Bias SEP R2 RPD RER 

54.9 0.90 57.9 0.2 58.1 0.86 2.42 11.9 
 

However, some authors obtained better validation parameters of CaCO3 
prediction models compared to ours. For example, Canasveras et al. (2012) 
achieved R2 0.93 and RPD 3.5 with carbonate content variation from 20-969 g 
kg-1 CaCO3 and a mean value of 559 g kg-1 CaCO3. Carmon and Ben Dor (2017) 
reported R2 of 0.94 for range of 0.0 to 74.27 % CaCO3, while Gras et al. (2014) 
obtained even higher R2 of 0.99 and RPD 8.6 for data set with carbonate range of 
0.0-84.9 g/100 g of soil and mean value of 16.1 g/100 g of soil. The possible 
factors of the relatively large differences in the accuracy of the CaCO3 content 
estimation are related mainly to nature of soil as a very complex mix of the 
mineral and organic compounds, parent material and calibration methods.  

Importance of the spectral ranges and wavelengths  
Figure 3 illustrates the importance, measured with regression coefficients, 

of each wavelength to the prediction model of CaCO3 content.  
 

 
Figure 3. Regression coefficients of the wavelengths in the CaCO3 model. 
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The highest values of the regression coefficients had wavelengths in the 
NIR spectral range at 2325 nm to 2365 nm with peak at 2340 nm. This is stated 
in accordance with previously established spectral activity for calcite in the NIR 
spectral range (700-2500 nm) with the strongest diagnostic vibrational 
absorptions at 2300-2350 nm (Clark 1999).  

The wavelengths retained as a significant (p <0.01) are marked in black. 
Furthermore, Figure 3 shows a high regression coefficient (contribution to the 
model) of the wavelengths between 2430 nm to 2470 nm and between 2215 nm 
to 2285 nm. The high values of regression coefficients of these absorptions can 
be related to the presence of secondary clay minerals (Clark 1999; Viscarra 
Rossel et al. 2006b). In visible range, the most significant wavelengths were 
obtained between 455 and 475 nm, that can be related to the presence of the Fe 
oxides and organic constituents (Ben-Dor et al. 1999). 

 
CONCLUSION 

This study showed that: 
- the CaCO3 content in anthropogenic soils derived from Flysch deposits 

varied within a very wide range (186.0 to 894.7 g kg-1) with a mean value of 
547.2 g kg-1 and showed normal near symmetrical frequency distribution 

-the PLSR model for quantitative prediction of CaCO3 content in 
investigated soils with R2 0.86, RPD 2.42 and RER 11.9 was moderately 
successful 

-the created model is suitable as a quality control (screening) of the CaCO3 
content in terraced soil derived from Flysch deposits 

-the largest contribution to the CaCO3 prediction model gives wavelengths 
indicating the spectral activity of calcite and clay minerals. 
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